Let $S=\left\{ x : x \in R \text { and }(\sqrt{3}+\sqrt{2})^{ x ^2-4}+(\sqrt{3}-\sqrt{2})^{ x ^2-4}=10\right\} \text {. }$ Then $n ( S )$ is equal to

  • [JEE MAIN 2023]
  • A

    $2$

  • B

    $4$

  • C

    $6$

  • D

    $0$

Similar Questions

Let $\alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7+$ $3 x^5-13 x^3-15 x=0$ and $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$. Then $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ is equal to $..................$.

  • [JEE MAIN 2023]

The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies

  • [JEE MAIN 2013]

Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is

  • [KVPY 2020]

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:

$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is

  • [KVPY 2015]