मान $S=\left\{x: x \in \mathbb{R} \text { एवं }(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10 \text { हैं }\right\}$ है। तब $\mathrm{n}(\mathrm{S})$ बराबर है-
$2$
$4$
$6$
$0$
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।
यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?
यदि $x,\;y,\;z$ वास्तविक व भिन्न हों, तो $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - 2xy$हमेशा होगा
यदि $x$ वास्तविक है, तो${x^2} - 8x + 17$ का न्यूनतम मान होगा