माना बंटन

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है

  • [JEE MAIN 2023]
  • A

    $8$

  • B

    $7$

  • C

    $6$

  • D

    $9$

Similar Questions

$5$ प्रेक्षणों का माध्य एवं प्रसरण क्रमशः $5$ एवं $8$ हैं। यदि तीन प्रेक्षण $1,3,5$ हैं, तब शेष दो प्रेक्षणों के घनों का योग है-

  • [JEE MAIN 2023]

$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं

 

पाँच प्रेक्षणों का माध्य $4.4$ तथा इनका प्रसरण $8.24$ है। यदि तीन प्रेक्षण $1, 2$ तथा $6$ हैं, तब अन्य दो प्रेक्षण हैं

यदि प्रेक्षणों ${x_1},\,{x_2},\,......{x_n}$ का प्रसरण ${\sigma ^2}$ है, तब $a{x_1},\,a{x_2},.......,\,{\rm{ }}a{x_n}$, $a \ne  0$ का प्रसरण है

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

प्रथम $n$ प्राकृत संख्याएँ