माना बंटन
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है
$8$
$7$
$6$
$9$
$5$ प्रेक्षणों का माध्य एवं प्रसरण क्रमशः $5$ एवं $8$ हैं। यदि तीन प्रेक्षण $1,3,5$ हैं, तब शेष दो प्रेक्षणों के घनों का योग है-
$200$ उम्मीदवारों के अंकों का माध्य तथा मानक विचलन क्रमश: $40$ तथा $15$ है। बाद में, यह पाया गया कि किसी संख्या $40$ को गलती से $50$ पढ़ा गया है। सही माध्य तथा मानक विचलन क्रमश: हैं
पाँच प्रेक्षणों का माध्य $4.4$ तथा इनका प्रसरण $8.24$ है। यदि तीन प्रेक्षण $1, 2$ तथा $6$ हैं, तब अन्य दो प्रेक्षण हैं
यदि प्रेक्षणों ${x_1},\,{x_2},\,......{x_n}$ का प्रसरण ${\sigma ^2}$ है, तब $a{x_1},\,a{x_2},.......,\,{\rm{ }}a{x_n}$, $a \ne 0$ का प्रसरण है
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याएँ