$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $8$ हैं। बाद में यह पाया गया कि एक प्रेक्षण को $40$ के स्थान पर $50$ लिया गया था। तो सही प्रसरण है :
$14$
$13$
$12$
$11$
एक समूह के दो नमूनों में से पहले नमूने में $100$ वस्तुएँ हैं जिनका माध्य $15$ तथा मानक विचलन $3$ हैं। यदि पूरे समूह में $250$ वस्तुएँ हैं और उनका माध्य $15.6$ तथा मानक विचलन $\sqrt{13.44}$ हैं, तो दूसरे नमूने का मानक विचलन है
निम्नलिखित आँकडों के लिए मानक विचलन ज्ञात कीजिए
${x_i}$ | $3$ | $8$ | $13$ | $18$ | $25$ |
${f_i}$ | $7$ | $10$ | $15$ | $10$ | $6$ |
यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है
यदि संख्याओं $-1,0,1, k$ का मानक विचलन $\sqrt{5}$ है, जहाँ $k > 0$ है, तो $k$ बराबर है
माना बंटन
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है