माना $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ एक परिवर्तनीय तथा दो बार अवकलनीय फलन है और $\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$ है यदि एक वास्तविक मान फलन $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, द्वारा परिभाषित है, तो :
$(0,2)$ में कम से कम दो $x$ के लिए $f^{\prime \prime}(x)=0$ है।
$(0,1)$ में ठीक एक $x$ के लिए $f^{\prime \prime}(x)=0$ है।
$(0,1)$ में कोई भी $\mathrm{x}$ नहीं है जिसके लिए $\mathrm{f}^{\prime \prime}(\mathrm{x})=0$ है
$\mathrm{f}^{\prime}\left(\frac{3}{2}\right)+\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=1$
फलन $f(x)=x^{2}+2 x-8, x \in[-4,2]$ के लिए रोले के प्रमेय को सत्यापित कीजिए।
वक्र $y = {x^3}$ पर अन्तराल $ [-2, 2]$ के बीच स्थित उन बिन्दुओं के भुज, जिन पर खींची गई स्पर्शियों की प्रवणतायें अन्तराल $ [-2, 2]$ के लिए मध्यमान प्रमेय (Mean value theorem) द्वारा ज्ञात की जा सकती हैं, हैं
यदि $f(x) = 2x - {x^2}$ के लिए अन्तराल $[0, 1]$ में लैगरांज प्रमेय सत्यापित है, तो $c$ का मान, जो कि $[0,\,1]$ में होगा, है
उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________
यदि फलन $f(x) = {x^3} - 6{x^2} + ax + b$ रौले प्रमेय को अंतराल $[1,\,3]$ में संतुष्ट करता है और $f'\left( {\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}} \right) = 0$, तब $a =$ ..............