Let $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$. If $\sum \limits_{ k =1}^n$ $D _{ k }=96$, then $n$ is equal to

  • [JEE MAIN 2023]
  • A

    $3$

  • B

    $5$

  • C

    $4$

  • D

    $6$

Similar Questions

If $ 5$  is one root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$, then other two roots of the equation are

Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by

$x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  are consistent then $k_1^2 + k_2^2$ is equal to

If $A \ne O$ and $B \ne O$ are $ n × n$ matrix such that $AB = O,$ then

If ${a^2} + {b^2} + {c^2} + ab + bc + ca \leq 0\,\forall a,\,b,\,c\, \in \,R$ , then the value of determinant $\left| {\begin{array}{*{20}{c}}
  {{{(a + b + c)}^2}}&{{a^2} + {b^2}}&1 \\ 
  1&{{{(b + c + 2)}^2}}&{{b^2} + {c^2}} \\ 
  {{c^2} + {a^2}}&1&{{{(c + a + 2)}^2}} 
\end{array}} \right|$ 

If the system of equations

$ 2 x+7 y+\lambda z=3 $

$ 3 x+2 y+5 z=4 $

$ x+\mu y+32 z=-1$

has infinitely many solutions, then $(\lambda-\mu)$ is equal to $\qquad$

  • [JEE MAIN 2024]