8. Sequences and Series
hard

माना $a_1, a_2, a_3, \ldots$ वर्धमान धनात्मक संख्याओं की एक $G.P.$ है। माना इसके छठे और आठवें पदों का योग $2$ है तथा इसके तीसरे और पाँचवें पदों का गुणनफल $\frac{1}{9}$ है। तो $6\left(a_2+a_4\right)\left(a_4+a_6\right)$ बराबर है।

A

$2 \sqrt{2}$

B

$2$

C

$3 \sqrt{3}$

D

$3$

(JEE MAIN-2023)

Solution

$a r^5+a r^7=2$

$\left(a r^2\right)\left(a r^4\right)=\frac{1}{9}$

$a^2 r^6=\frac{1}{9}$

Now, $r > 0$

$\operatorname{ar}^5\left(1+r^2\right)=2$

Now, $ar ^3=\frac{1}{3}$ or $-\frac{1}{3}$ (rejected)

$r^2=2$

$r=\sqrt{2}$

$a=\frac{1}{6 \sqrt{2}}$

Now, $6\left(a_2+a_4\right)\left(a_4+a_6\right)$

$6\left(a r+a r^3\right)\left(a r^3+a r^5\right)$

$6 a^2 r^4\left(1+r^2\right)$

$6\left(\frac{1}{36.2}\right)(4)(9)=3$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.