Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation $R$ is
Reflexive
Transitive
Not symmetric
A function
Let ${R_1}$ be a relation defined by ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $. Then ${R_1}$ is
The number of reflexive relations of a set with four elements is equal to
Let $A=\{1,2,3, \ldots \ldots .100\}$. Let $R$ be a relation on A defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $\mathrm{R} \subset \mathrm{R}_1$ and the number of elements in $\mathrm{R}_1$ is $\mathrm{n}$. Then, the minimum value of $n$ is..........................
Let $R$ be an equivalence relation on a finite set $A$ having $n$ elements. Then the number of ordered pairs in $R$ is
In the set $A = \{1, 2, 3, 4, 5\}$, a relation $R$ is defined by $R = \{(x, y)| x, y$ $ \in A$ and $x < y\}$. Then $R$ is