माना$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ तथा $|2 \mathrm{~A}|^3=2^{21}$ है, जहाँ $\alpha, \beta \in \mathrm{Z}$ है। तो $\alpha$ का एक मान है
$3$
$5$
$17$
$9$
यदि रेखीय समीकरणों के निकाय $2 x-3 y=\gamma+5$ $\alpha x +5 y =\beta+1$, जहाँ $\alpha, \beta, \gamma \in R$ के अनन्त हल ह, तो $|9 \alpha+3 \beta+5 \gamma|$ का मान है
समीकरणों के निकाय $3x + y + 2z = 3,$ $2x - 3y - z = - 3$, $x + 2y + z = 4$के लिये $x,y,z$ के मान होंगे
यदि $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, तो $x =$
रेखिक समीकरण निकाय $x+y+z=4 \mu$, $x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ जहाँ $\lambda, \mu \in \mathrm{R}$ हैं का विचार कीजिए। निम्न कथनों में से कौन सा सही नहीं है ?
$\left| {\,\begin{array}{*{20}{c}}{1/a}&{{a^2}}&{bc}\\{1/b}&{{b^2}}&{ca}\\{1/c}&{{c^2}}&{ab}\end{array}\,} \right| = $