ધારો કે  $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ અને  $|2 A|^3=2^{21}$ છે જ્યાં  $\alpha, \beta \in Z$,તો  $\alpha $ ની એક કિંમત ______________ છે.

  • [JEE MAIN 2024]
  • A

    $3$

  • B

    $5$

  • C

    $17$

  • D

    $9$

Similar Questions

જો સમીકરણ સંહતિ $x+4 y-z=\lambda, 7 x+9 y+\mu z=-3,5 x+y+2 z=-1$ ને અનંત ઉકેલો હોય, તો $(2 \mu+3 \lambda)=$.............. 

  • [JEE MAIN 2024]

જો $\alpha, \beta, \gamma$ એ સમીકરણ $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ અને  $a , b \neq 0)$ ના બીજ છે અને સમીકરણો ($u,v,w$ ના ચલમાં)  $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ એ શૂન્યતર ઉકેલ ધરાવે છે તો  $\frac{a^{2}}{b}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

સુરેખ સમીકરણ સંહતિ $x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$ ધ્યાને લો, જ્યાં $\lambda$, $\mu \in R$. નીચેના વિધાનો પૈકી ક્યું એક સાચું નથી ?

  • [JEE MAIN 2024]

ધારો કે $a ,b ,c $ માટે $b + c \ne 0$ . જો $\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \bullet a}&{{{\left( { - 1} \right)}^{n + 1}} \bullet b}&{{{\left( { - 1} \right)}^n} \bullet c}\end{array}} \right| = 0$ તો $n$ મેળવો.

  • [AIEEE 2009]

જો $A = \left| {\,\begin{array}{*{20}{c}}{ - 1}&2&4\\3&1&0\\{ - 2}&4&2\end{array}\,} \right|$અને $B = \left| {\,\begin{array}{*{20}{c}}{ - 2}&4&2\\6&2&0\\{ - 2}&4&8\end{array}\,} \right|$, તો $B =$