$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$ નું મૂલ્ય શોધો. ( ${R_1} = {R_3}$ છે. )

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution Expanding along first row, we get

$\begin{aligned}
\Delta &=3(6-6)-2(6-9)+3(4-6) \\
&=0-2(-3)+3(-2)=6-6=0
\end{aligned}$

Here $R_{1}$ and $R_{3}$ are identical.

Similar Questions

જો $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ અને $A$ અને $B$ એ અનુક્રમે $f(\theta )$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો $(A , B)$ મેળવો.

  • [JEE MAIN 2014]

ધારો કે $A_1, A_2, A_3$ એ, સમાન સામાન્ય તફાવત $d$ વાળી ત્રણ સમાંતર શ્રેણીઓ છે, જેના પ્રથમ પદો અનુક્રમે $A , A +1, A +2$ છે. ધારો કે $A _1, A _2, A _3$ ના $7$મા, $9$મા, $17$મા પદો અનુક્રમે $a, b, c$ છે, જ્યાં $\left|\begin{array}{ccc}a & 7 & 1 \\ 2 b & 17 & 1 \\ c & 17 & 1\end{array}\right|+70=0.$ જો $a=29$ હોય તો, જેનું પ્રથમ પદ $c-a-b$ હોય અને સામાન્ય તફાવત $\frac{d}{12}$ હોય તેવી સમાંતર શ્રેણીના પ્રથમ $20$ પદોનો સરવાળો $...........$ છે.

  • [JEE MAIN 2023]

સમીકરણની સંહતિ $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $ નો એકપણ ઉકેલ શક્ય ન હોય તો . . .

જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .

જો સમીકરણો $ax^2 + bx + c = 0$ અને $px^2 + qx + r = 0$, ના બીજ અનુક્રમે $\alpha_1, \alpha_2$ અને $\beta_1, \beta_2$ હોય, તો સમીકરણોની પદ્ધતિ (Syteam of Linear Equatioin ) $\alpha_1y + \alpha_2z = 0$ અને $\beta_1y + \beta_2z = 0$  શૂન્યેતર ઉકેલ ધરાવે તો શું થાય ?