The income of a person is $Rs. \,3,00,000,$ in the first year and he receives an increase of $Rs.\,10,000$ to his income per year for the next $19$ years. Find the total amount, he received in $20$ years.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, we have an $\mathrm{A.P.}$ with $a=3,00,000, d=10,000,$ and $n=20$ Using the sum formula, we get,

$S_{20}=\frac{20}{2}[600000+19 \times 10000]=10(790000)=79,00,000$

Hence, the person received $Rs.\, 79,00,000$ as the total amount at the end of $20$ years.

Similar Questions

The arithmetic mean of the nine numbers in the given set $\{9,99,999,...., 999999999\}$ is a $9$ digit number $N$, all whose digits are distinct. The number $N$ does not contain the digit

If the sum of the $10$ terms of an $A.P.$ is $4$ times to the sum of its $5$ terms, then the ratio of first term and common difference is

Let ${\left( {1 - 2x + 3{x^2}} \right)^{10x}}  = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, then the arithmetic mean of $a_0,a_1,a_2,...a_n$ is

Let $s _1, s _2, s _3, \ldots \ldots, s _{10}$ respectively be the sum to 12 terms of 10 A.P.s whose first terms are $1,2,3, \ldots, 10$ and the common differences are $1,3,5, \ldots, 19$ respectively. Then $\sum \limits_{i=1}^{10} s _{ i }$ is equal to

  • [JEE MAIN 2023]

If the numbers $a,\;b,\;c,\;d,\;e$ form an $A.P.$, then the value of $a - 4b + 6c - 4d + e$ is