माना $\alpha=\sum_{k=0}^{\mathrm{n}}\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ तथा $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$ हैं। यदि $5 \alpha=6 \beta$ हैं, तो $\mathrm{n}$ बराबर है ............
$6$
$7$
$9$
$10$
मान लीजिए कि $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !} \mid$ तब योग $\frac{1}{2^{10}} \sum_{k=0}^{10}\left(\frac{10}{k}\right) k^2$ का मान किस अंतराल में होगा ?
श्रेणी $2 .{ }^{20} C _{0}+5 .{ }^{20} C _{1}+8 .{ }^{20} C _{2}+11 .{ }^{20} C _{3}+\ldots +62 .{ }^{20} C _{20}$ का योग बराबर है
माना $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+$ $(x+3)^{n-3} \cdot(x+2)^2+\ldots \ldots .+(x+2)^{n-1}$ के प्रसार में $x^r$ का गुणांक $\alpha_r$ है। यदि $\sum_{\mathrm{r}=0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$ है, तो $\beta^2+\gamma^2$ बराबर है ........
${(1 + x + {x^2})^n}$ के विस्तार में गुणांकों का योग होगा
यदि ${(1 + x + {x^2})^n}$ के विस्तार में ${x^r}$का गुणांक ${a_r}$ हो, तो ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $