यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n},$ तो $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

  • A

    $\frac{{n!}}{{n!n!}}$

  • B

    $\frac{{(2n)!}}{{n!n!}}$

  • C

    $\frac{{(2n)!}}{{n!}}$

  • D

    इनमें से कोर्इ नहीं

Similar Questions

${(1 + x - 3{x^2})^{2134}}$ के गुणांकों का योग होगा

${(1 + x)^5}$ के विस्तार में पदों के गुणांकों का योगफल होगा

यदि $\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .$. $30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{(30 !)^2}$, है, तो $\alpha \cdot$ बराबर है :

  • [JEE MAIN 2023]

व्यंजक $(5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots . x^{500}$ $x > 0$ में $x ^{101}$ का गुणांक होगा -

  • [JEE MAIN 2022]

माना $m, n \in N$ तथा $\operatorname{gcd}(2, n)=1$ हैं। यदि $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ हैं तो $n + m$ बराबर है I (यहाँ) $\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }$ है।

  • [JEE MAIN 2021]