$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + .... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $

  • [IIT 1962]
  • A

    $100$

  • B

    $120$

  • C

    $- 120$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि ${a_k} = \frac{1}{{k(k + 1)}},$ जबकि $k = 1,\,2,\,3,\,4,.....,\,n$, तब ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $

 $^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ का मान है

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा 

$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ में $\mathrm{x}^{301}$ का गुणांक है :

  • [JEE MAIN 2023]

${(1 + x + {x^2} + {x^3})^5}$ के विस्तार में $x$  की सम घातों के गुणांकों का योगफल है