ધારો કે $S_n$ એ, સમાંતર શ્રેણી $3,7,11, \ldots . . .$. નાં $n$ પદોનો સરવાળો છે. જો $40<\left(\frac{6}{n(n+1)} \sum_{k=1}^n S_k\right)<42$ હોય,તો $n=$___________.
$9$
$8$
$10$
$7$
સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો $b _{1}$ ની કિમત શોધો.
ધારોકે $a_{1}, a_{2,}, \ldots \ldots, a_{ n }, \ldots \ldots . .$ એ પ્રાકૃતિક સંખ્યાઆની એક સમાંતર શ્રેણી છે. જો આ શ્રેણીના પ્રથમ પાંચ પદોના સરવાળા અને પ્રથમ નવ પદોના સરવાળાનો ગુણોત્તર $5: 17$ હોય અને $110 < a_{15} < 120$ હોય, તો આ શ્રેણીના પ્રથમ દસ પદોનો સરવાળો ......... છે.
વિધાન- I : બે સમાંતર શ્રેણીના $n$ પદોનો સરવાળો ગુણોત્તર $(7n + 1) : (4n + 17)$ હોય, તો તેમના $n$ માં પદોનો ગુણાકાર $7 : 4$ થાય.વિધાન- II : જો $S_n = an^2 + bn + c,$ હોય, તો $T_n = S_n - S_{n-1}$ થાય.
એક માણસ તેની નોકરીના પ્રથમ ત્રણ મહિનામાં $200$ રૂપિયાની બચત કરે છે. તે પછીના મહિનામાં તેની બચત પહેલાંના મહિના કરતાં $40$ રૂપિયા છે. નોકરીની શરૂઆતથી કેટલા ................. મહિના પછી તેની કુલ બચત $11040$ રૂપિયા થશે ?
જો ${a_1},\;{a_2},\;{a_3}.......{a_n}$ એ સંમાતર શ્રેણીમંા હોય કે જયાંં ${a_i} > 0$,તો $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $ ___.