माना $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ हैं तथा माना एक समांतर चतुर्भज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ तथा $\mathrm{D}(1,2)$ हैं। यदि $\mathrm{AB}=\sqrt{10}$ है तथा बिन्दु $\mathrm{A}$ और $\mathrm{C}$, रेखा $3 \mathrm{y}=2 \mathrm{x}+1$ पर है, तो $2(\alpha+\beta+\gamma+\delta)$ बराबर है।
$10$
$5$
$12$
$8$
उस समान्तर चतुभुज का क्षेत्रफल, जिसकी भुजाएँ $x\cos \alpha + y\sin \alpha = p$, $x\cos \alpha + y\sin \alpha = q,\,\,$ $x\cos \beta + y\sin \beta = r$ व $x\cos \beta + y\sin \beta = s$ हैं, होगा
मूलबिन्दु से खींची गयी सरल रेखायुग्म एक अन्य रेखा $2x + 3y = 6$ के साथ समद्विबाहु समकोण त्रिभुज बनाती है, तो सरल रेखाओं के समीकरण एवं इस प्रकार प्राप्त त्रिभुज का क्षेत्रफल होगा
त्रिभुज $A B C$ की भुजा $A B$ तथा $A C$ पर बिंदु $X, Y$ क्रमश: इस प्रकार स्थापित हैं कि रेखाखंड $X Y$ और $B C$ समांतर हैं । निम्नलिखित में से कौन से कथन हमेशा उचित हैं? (यहाँ त्रिभुज $P Q R$ का क्षेत्रफल $[P Q R]$ से निर्देशित किया गया है)
$(I)$ $[B C X]=[B C Y]$
$(II)$ $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
यदि त्रिभुज $ABC$ के शीर्षों के निर्देशांक क्रमश: $(-1, 6)$,$(-3,-9)$, तथा $(5, -8)$ हों तो $C$ से गुजरने वाली माध्यिका का समीकरण होगा
किसी समान्तर चतुभुज की दो आस भुजायें $4x + 5y = 0$ व $7x + 2y = 0$ हैं। यदि एक विकर्ण का समीकरण $11x + 7y = 9$ हो, तो दूसरे विकर्ण का समीकरण है