माना एक त्रिभुज की तीन भुजाओं की लंबाईयाँ $a, b, c$ है, जो $\left(a^2+b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ को संतुष्ट करती है। यदि $x$ के सभी संभव मानों का समुच्चय अंतराल $(\alpha, \beta)$ है, तो $12\left(\alpha^2+\beta^2\right)$ बराबर है............................

  • [JEE MAIN 2024]
  • A

    $30$

  • B

    $36$

  • C

    $35$

  • D

    $37$

Similar Questions

समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है

यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?

  • [KVPY 2013]

मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:

  • [KVPY 2020]

माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?

  • [JEE MAIN 2020]

यदि $x, y$ वास्तविक संख्याएं $(real\,numbers)$ इस प्रकार हैं कि $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$ तो $(x+y) /(x-y)$ का मान $(value)$ क्या होंगे ?

  • [KVPY 2010]