समीकरण ${x^2} + 5|x| + \,\,4 = 0$ के वास्तविक हल होंगे
$-1, 4$
$1, 4$
$-4, 4$
इनमें से कोई नहीं
वक्रों $\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$ है, तो $\mathrm{S}$ में अवयवों की संख्या है :
कुछ धनात्मक पूर्णांक संख्याओं $a$ और $b$ के लिए यदि $t$ एक वास्तविक संख्या इस प्रकार है कि $t^2=a t+b$. तब किसी धनात्मक पूर्णांक $a$ और $b$ के लिए, $t^3$ निम्नलिखित में किसके बराबर नहीं है?
बहुपद समीकरण $x^4-x^2+2 x-1=0$ के वास्तविक मूलों की संख्या है:
द्विघात समीकरण $n x^2+7 \sqrt{n} x+n=0$ में $n$ एक धनात्मक पूर्णांक संख्या है. निम्नलिखित में कौन सा कधन निध्रित रूप से सत्य है ?
$I$. किसी भी $n$ के लिए, समीकरण के मूल भिन्न होंगे,
$II$. $n$ के अन्नत मान होंगे यदि दोनों मूल वास्तबिक है.
$III$. मूलों का गुणनफल निश्रय ही एक पूर्णांक है.
यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?