माना दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ की उत्केन्द्रता $\frac{1}{\sqrt{2}}$ है तथा नाभिलंब जीवा की लम्बाई $\sqrt{14}$ है, तो $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ की उत्केन्द्रता का वर्ग है :
$3$
$7 / 2$
$3 / 2$
$5 / 2$
माना एक दीर्घवृत्त, जिसका केन्द्र $(1,0)$ पर है तथा नाभिलंब जीवा की लंबाई $\frac{1}{2}$ है, का दीर्घ अक्ष, $\mathrm{x}$-अक्ष के अनुदिश है। यदि इसका लघु अक्ष इसकी नाभि पर $60^{\circ}$ का कोण बनाता हैं, तो इसके लघु तथा दीर्घ अक्षों की लंबाईयों के योग का वर्ग बराबर है :
दीर्घवृत्त $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ की उत्केन्द्रता है
एक दीर्घवृत्त की नाभियों के बीच की दूरी, इसके नाभिलंब की लंबाई की आधी है, तो दीर्घवृत्त की उत्केंद्रता है
यदि किसी दीर्घवृत्त की नाभियों के बीच की दूरी उसकी लघु अक्ष के बराबर हो, तो उसकी उत्केन्द्रता होगी
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$