ધારો કે $\mathrm{S}_{\mathrm{n}}$ એક સમાંતર શ્રેણીના પ્રથમ $\mathrm{n}$ પદ્દોનો સરવાળો દર્શાવે છે. જે $\mathrm{S}_{10}=390$ તથા દસમા અને પાંચમા પદોનો ગુણોત્તર $15: 7$ હોય, તો $S_{15}-S_5=$........................ 

  • [JEE MAIN 2024]
  • A

    $800$

  • B

    $890$

  • C

    $790$

  • D

    $690$

Similar Questions

સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$  $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$

$a + (a + d) + (a + 2d) + … + (a + 2nd)$ શ્રેણીનો સમાંતર મધ્યક કયો છે ?

પ્રત્યેક પ્રાકૃતિક સંખ્યા $n$ માટે બે સમાંતર શ્રેણીઓનાં પ્રથમ $n$ પદોના સરવાળાનો ગુણોત્તર $(3 n+8):(7 n+15)$ હોય, તો તેમનાં $12$ માં પદનો ગુણોત્તર શોધો. 

ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?

  • [JEE MAIN 2023]

ધારો કે $S _{ n }=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\ldots n$ પદો સુધી. જો પ્રથમ પદ $- p$ તથા સામાન્ય તફાવત $p$ હોય તવી એક સમાંતર શ્રેણી $(A.P.)$ નાં પ્રથમ છ પદોનો સરવાળો $\sqrt{2026 S_{2025}}$ હોય, તો સમાંતર શ્રેણીના $20^{\text {th }}$ માં અને $15^{\text {th }}$ મા પદોનો નિરપેક્ષ તફાવત_________છે.

  • [JEE MAIN 2025]