माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :

  • [JEE MAIN 2024]
  • A

    $800$

  • B

    $890$

  • C

    $790$

  • D

    $690$

Similar Questions

श्रेढ़ियों $4,9,14,19, \ldots \ldots, 25$ पदों तक तथा $3,6,9,12, \ldots \ldots ., 37$ पदों तक में उभयनिष्ठ पदों की संख्या है:

  • [JEE MAIN 2024]

यदि $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ समान्तर श्रेणी में हों, तो $x$  का मान होगा

  • [AIEEE 2002]

श्रेणियों $3+7+11+15+\ldots$ तथा $1+6+11+16+\ldots \ldots$, के बीच उभयनिष्ठ प्रथम $20$ पदों का योग है

  • [JEE MAIN 2014]

चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी

$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है