माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
$800$
$890$
$790$
$690$
श्रेणी $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ के $24$ पदों का योगफल है
यदि $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ एक वर्धमान $A.P.$ है और इसके पदों का प्रसरण $90$ है, तो इस $A.P.$ का सार्व अन्तर है
यदि किसी समांतर श्रेणी का $9$ वाँ पद शून्य हो, तो उसके $29$ वें तथा $19$ वें पदों का अनुपात है
किसी बहुभुज के अन्त: कोण समान्तर श्रेणी में हैं। यदि सबसे छोटा कोण ${120^o}$ और सार्वअन्तर $5^o$ है, तो भुजाओं की संख्या होगी
यदि किसी समांतर श्रेणी के $n$ पदों का योग $n P +\frac{1}{2} n(n-1) Q$, है, जहाँ $P$ तथा $Q$ अचर हो तो सार्व अंतर ज्ञात कीजिए।