- Home
- Standard 11
- Mathematics
माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
$800$
$890$
$790$
$690$
Solution
$ \mathrm{S}_{10}=390 $
$ \frac{10}{2}[2 \mathrm{a}+(10-1) \mathrm{d}]=390 $
$ \Rightarrow 2 \mathrm{a}+9 \mathrm{~d}=78 $ $……(1)$
$ \frac{\mathrm{t}_{10}}{\mathrm{t}_5}=\frac{15}{7} \Rightarrow \frac{\mathrm{a}+9 \mathrm{~d}}{\mathrm{a}+4 \mathrm{~d}}=\frac{15}{7} \Rightarrow 8 \mathrm{a}=3 \mathrm{~d} $ $……(2)$
$ \text { From }(1) \&(2) \quad \mathrm{a}=3 \& \mathrm{~d}=8 $
$ \mathrm{~S}_{15}-\mathrm{S}_5=\frac{15}{2}(6+14 \times 8)-\frac{5}{2}(6+4 \times 8) $
$ =\frac{15 \times 118-5 \times 38}{2}=790$