જો બહૂકોણનો અંતર્ગત ખૂણાઓ સમાંતર શ્રેણીમાંં હોય અને નાનો ખૂણો ${120^o}$ છે,અને સામાન્ય તફાવત $5^o$ નો હોય તો બહૂકોણની બાજુની સંખ્યા મેળવો.
$8$
$10$
$9$
$6$
$p , q \in R$ માટે, વાસ્તવિક વિધેય $f(x)=(x- p )^{2}- q , x \in R$ અને $q >0$ ધ્યાનેન લો. ધારોકે $a _{1}, a _{2}, a _{3}$ અને $a _{4}$ એ સમાંતર શ્રેણીમાં છે તથા તેનો મધ્યક $p$ અને સામાન્ય તફાવત ધન છે. જો પ્રત્યેક $i=1,2,3,4$ માટે $\left|f\left( a _{i}\right)\right|=500$, તો $f(x)=0$ નાં બીજો વચ્ચેનો નિરપેક્ષ તફાવત ............ છે.
સમાંતર શ્રેણીના પ્રથમ ત્રણ પદોનો સરવાળો $39$ અને તેના છેલ્લા ચાર પદોનો સરવાળો $178$ છે. જો પ્રથમ પદ $10$ હોય તો સમાંતર શ્રેણીનો મધ્યસ્થ મેળવો.
જો $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ એ સમાંતર શ્રેણીમાં છે અને $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ એ પણ સમાંતર શ્રેણીમાં હોય તો $|x-2 y|$ ની કિમંત મેળવો.
વધતી સમાંતર શ્રેણીમાં ચાર ક્રમિક પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો બધી જ સંખ્યાઓનો સરવાળો કેટલો થાય ?
સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને $q$ મું પદ $p$ હોય, તો તેનું $r$ મું પદ...... થશે.