5. Continuity and Differentiation
hard

Let $f(x)$ satisfy all the conditions of mean value theorem in  $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all  $x$ in  $[0, 2]$ then

A

$f(x) \le 2$

B

$|f(x)| \le 1$

C

$f(x) = 2x$

D

$f(x) = 3$ for at least one $ x $ in  $[0, 2]$

Solution

(b) $\frac{{f(2) – f(0)}}{{2 – 0}} = f'(x) \Rightarrow \frac{{f(2) – 0}}{2} = f'(x)$

$ \Rightarrow \frac{{df(x)}}{{dx}} = \frac{{f(2)}}{2} \Rightarrow f(x) = \frac{{f(2)}}{2}x + c$

$\therefore f(0) = 0 \Rightarrow c = 0$; 

$\therefore f(x) = \frac{{f(2)}}{2}x$…..$(i)$

Given $|f'(x)| \le \frac{1}{2} \Rightarrow \left| {\frac{{f(2)}}{2}} \right| \le \frac{1}{2}$…..$(ii)$

$(i)$ ==> $|f(x)| = \left| {\frac{{f(2)}}{2}x} \right| = \left| {\frac{{f(2)}}{2}} \right||x| \le \frac{1}{2}|x|$   [from $(ii)$]

In $ [0, 2],$  for maximum $x(x = 2)$

$|f(x)| \le \frac{1}{2}.\,\,\,2 \Rightarrow |f(x)| \le 1$ .

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.