Let $f(x)$ satisfy all the conditions of mean value theorem in $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all $x$ in $[0, 2]$ then
$f(x) \le 2$
$|f(x)| \le 1$
$f(x) = 2x$
$f(x) = 3$ for at least one $ x $ in $[0, 2]$
The function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfy the conditions of Rolle's theorem in $[1, 3]. $ The values of $a $ and $ b $ are
For a real number $x$ let $[x]$ denote the largest number less than or equal to $x$. For $x \in R$ let $f(x)=[x] \sin \pi x$. Then,
If the Rolle's theorem holds for the function $f(x) = 2x^3 + ax^2 + bx$ in the interval $[-1, 1 ]$ for the point $c = \frac{1}{2}$ , then the value of $2a + b$ is
Verify Rolle's theorem for the function $y=x^{2}+2, a=-2$ and $b=2$
Let $f(x) = 8x^3 - 6x^2 - 2x + 1,$ then