Let $f(x)$ satisfy all the conditions of mean value theorem in $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all $x$ in $[0, 2]$ then
$f(x) \le 2$
$|f(x)| \le 1$
$f(x) = 2x$
$f(x) = 3$ for at least one $ x $ in $[0, 2]$
Let $f$ be any function defined on $R$ and let it satisfy the condition
$|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ If $f(0)=1,$ then
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$
If the function $f(x) = 2x^2 + 3x + 5$ satisfies $LMVT$ at $x = 3$ on the closed interval $[1, a]$ then the value of $a$ is equal to
A value of $c$ for which conclusion of Mean Value Theorem holds for the function $f\left( x \right) = \log x$ on the interval $[1,3]$ is
If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to