ધારો કે $f: \mathbb{R} \rightarrow \mathbb{R}$ એ એવું ત્રીવિક્લનીય વિધેય છે કે જેથી $f(0)=0, f(1)=1, f(2)=-$ $1, f(3)=2$ અને $f(4)=-2$. તો $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime}\right)(x)$ નાં શૂન્યની ન્યૂનતમ સંખ્યા ......... છે.
$8$
$4$
$5$
$9$
જો સમીકરણ $a_nx^n + a_{n-1}x^{n-1}+ …. + a_1x = 0 $ નું ધન બીજ $x = \alpha $ હોય, તો સમીકરણ $na_nx^{n-1 } + (n - 1) a_{n-1}x^{n-2} + …. + a_1 = 0$ નું ધન બીજ કેવું હોય ?
મધ્યકમાન પ્રમેય મુજબ ,$a < x_1 < b$ પર $f(b) -f(a) = (b -a) f '(x_1);$ હોય અને $f(x) = 1/x$ હોય તો $x_1 = ?$
ધારો કે $f$ અને $g$ એ $(-2,2)$ પરનાં એવા દ્વિ વિકલનીય ચુગ્મ વિધેયો છે કે જેથી $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ અને $g\left(\frac{3}{4}\right)=0, g(1)=2 .$ ,તો $(-2,2)$ માં, $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ ના ઉકેલોની ન્યૂનતમ સંખ્યા $\dots\dots$છે.
અંતરાલ $[-2, 2]$ માં, વક્ર $y = {x^3}$ પરના બિંદુનો $x-$ યામ મેળવો કે જેનો સ્પર્શકનો ઢાળએ અંતરાલ $[-2, 2]$ માં મધ્યક પ્રમેય મુજબ મેળવી શકાય છે.
$\left[ {\frac{\pi }{6},\,\frac{{5\pi }}{6}} \right]\,\,$ અતરલમાં વિધેય ${f}{\text{(x) = logsinx }}$ માટે લાંગ્રાજના પ્રમેયના $c$ નું મૂલ્ય કેટલું થાય $?$