મધ્યકમાન પ્રમેયમાં $f(b) - f(a) = (b - a)f'(c)$ આપેલ છે. જો $a = 4 , b = 9$ અને $f(x) = \sqrt x $ તો $ c$ ની કિમંત મેળવો.

  • A

    $8$

  • B

    $5.25$

  • C

    $4$

  • D

    $6.25$

Similar Questions

વિધેય $f(x) = |x|$ એ અંતરાલ $[-1, 1]$ માં રોલ ના પ્રમેયનું પાલન કરતું નથી કારણ કે . . . .

$f(x)$ એ  $[1,2]$ પર સતત અને $(1,2)$ પર વિકલનીય આપેલ છે જે $f(1) = 2, f(2) = 3$ અને $f'(x) \geq 1 \forall x \in (1,2)$ નું પાલન કરે છે અને $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ દ્વારા વ્યાખ્યાયિત છે તો $[1,2]$ પર $g(x)$ ની મહતમ કિમંત મેળવો.

દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{  +  bx  +  c  =  0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો. 

વિધાન $- 1 : (0, 1)$  અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.

વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$  માટે રોલનો પ્રમેય લાગુ પાડી શકાય.

દ્રીઘાત સમીકરણ  $ax^2 + bx + c = 0$ કે જ્યાં  $2a + 3b + 6c = 0$ અને વિધેય $g(x) = a\frac{{{x^3}}}{3} + b\frac{{{x^2}}}{2} + cx.$ આપેલ છે .

વિધાન $1:$ દ્રીઘાત સમીકરણનું એક બીજ  $(0, 1)$ અંતરાલ માં આવેલ છે .

વિધાન $2:$ વિધેય $g(x)$ પર અંતરાલ  $[0, 1 ]$ માં રોલનું પ્રમેય ઉપયોગ કરી શકાય.

  • [AIEEE 2012]

વિધેય ${{{x^2} - 3x} \over {x - 1}}$ એ . . . અંતરાલ માટે રોલ ના પ્રમેયની શરતો નું પાલન કરે છે .