ધારોકે $z$ એવી સંકર સંખ્યા છે કે જેથી $|z+2|=1$ અને $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. તો $|\operatorname{Rc}(\overline{z+2})|$ નું મૂલ્ય ............ છે.
$\frac{\sqrt{6}}{5}$
$\frac{1+\sqrt{6}}{5}$
$\frac{24}{5}$
$\frac{2 \sqrt{6}}{5}$
બે સંકર સંખ્યા ${z_1}$ અને ${z_2}$ છે અને કોઈ વાસ્તવિક સંખ્યા $a$ અને $b$ માટે; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
જો $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ એ શુધ્ધ કાલ્પનિક સંખ્યા અને $\left| z \right| = 2$ હોય તો $\alpha $ ની કિમત મેળવો.
જો ${z_1}$ અને ${z_2}$ એ બે સંકર સંખ્યા હોય ${z_1} \ne {z_2}$ અને $|{z_1}|\, = \,|{z_2}|$ છે. જો ${z_1}$ ને ધન વાસ્તવિક ભાગ છે અને ${z_2}$ ઋણ કાલ્પનિક ભાગ છે ,તો $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$ એ . . . થાય.
જો $(x-i y)(3+5 i)$ એ $-6-24 i$ ની અનુબદ્ધ સંકર સંખ્યા હોય, તો વાસ્તવિક સંખ્યાઓ $x$ અને $y$ શોધો.
જો ${z_1} = 1 + 2i$ અને ${z_2} = 3 + 5i$ તો $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ = . . .