Let ${z_1}$ be a complex number with $|{z_1}| = 1$ and ${z_2}$be any complex number, then $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
$0$
$1$
$-1$
$2$
If ${z_1} = a + ib$ and ${z_2} = c + id$ are complex numbers such that $|{z_1}| = |{z_2}| = 1$ and $R({z_1}\overline {{z_2}} ) = 0,$ then the pair of complex numbers ${w_1} = a + ic$ and ${w_2} = b + id$ satisfies
Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that
If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$
If complex numbers $(x -2y) + i(3x -y)$ and $(2x -y) + i(x -y + 6)$ are conjugates of each other, then $|x + iy|$ is $(x,y \in R)$
Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation
$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .