ધારો કે $\mathrm{S}$ એ અતિવલય $\frac{x^2}{3}-\frac{y^2}{5}=1$ ની ધન $x$-અક્ષ પર આવેલ નાભિ છે. ધારો કે $\mathrm{C}$ એ કેન્દ્ર $\mathrm{A}(\sqrt{6}, \sqrt{5})$ અને બિંદુ $S$ માંથી પસાર થતું વર્તુળ છે.જો $\mathrm{O}$ ઊગમબિંદૂ હોય અને $SAB$ એ $C$ નો વ્યાસ હોય, તો ત્રિકોણ $OSB$ ના ક્ષેત્રફળનો વર્ગ ............. છે.
$48$
$46$
$40$
$12$
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : નાભિઓ $(\pm 4,\,0),$ નાભિલંબની લંબાઈ $12$
જો પ્રમાણિત અતિવલયની ઉત્કેન્દ્ર્તા $2$ હોય જે બિંદુ $(4, 6)$ માંથી પસાર થતું હોય તો બિંદુ $(4, 6)$ આગળ અતિવલયનો સ્પર્શક મેળવો.
જો $ x = 9 $ એ અતિવલય $ x^2 - y^2 = 9$ ની સ્પર્શ જીવા હોય, તો અનુરૂપ સ્પર્શકોની જોડનું સમીકરણ...
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $y^{2}-16 x^{2}=16$
જો અતિવલયની નાભીઓ ઉપવલય $\frac{x^2}{9}+\frac{y^2}{25}=1$ ની નાભીઓ સમાન હોય અને અતિવલયની ઉકેન્દ્રીતા એ ઉપવલયની ઉત્કેન્દ્રીતાથી $\frac{15}{8}$ ગણી છે, તો અતિવલય પરના બિંદુ $\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ નું ન્યૂનતમ નાભી અંતર મેળવો.