- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
Let $AP ( a ; d )$ denote the set of all the terms of an infinite arithmetic progression with first term a and common difference $d >0$. If $\operatorname{AP}(1 ; 3) \cap \operatorname{AP}(2 ; 5) \cap \operatorname{AP}(3 ; 7)=\operatorname{AP}( a ; d )$ then $a + d$ equals. . . . .
A
$150$
B
$154$
C
$155$
D
$157$
(IIT-2019)
Solution
We equate the general terms of three respective
$\text { A.P.'s as } 1+3 a =2+5 b =3+7 c$
$\Rightarrow 3 \text { divides } 1+2 b \text { and } 5 \text { divides } 1+2 c$
$\Rightarrow 1+2 c =5,15,25 \text { etc. }$
So, first such terms are possible when $1+2 c=15$ i.e. $c =7$
$\text { Hence, first term }=a=52$
$d=1 cm (3,5,7)=105$
$\Rightarrow a+d=157$
Standard 11
Mathematics