माना वृत्त $x ^2+ y ^2= r ^2$ जहाँ $r >\frac{\sqrt{5}}{2}$ है का केन्द्र $O$ है। माना इस वृत्त की जीवा $PQ$ तथा रेखा का समीकरण, जो बिन्दु $P$ तथा $Q$ से गुजरता है, $2 x +4 y =5$ है। यदि त्रिभुज $OPQ$ के परिवृत्त का केन्द्र रेखा $x +2 y =4$ पर स्थित हो, तो $r$ का मान होगा. . . . .
$1$
$2$
$3$
$4$
वृत्त ${x^2} + {y^2} = 4$ के बिन्दु $(1,\sqrt 3 )$ पर खींची गयी स्पर्श रेखा एवं अभिलम्ब एवं धनात्मक $x$-अक्ष से बने त्रिभुज का क्षेत्रफल है
यदि रेखा $4x + 3y + \lambda = 0$ वृत्त $2({x^2} + {y^2}) = 5$ को स्पर्श करे तो $\lambda $ का मान होगा
वृत्तों ${x^2} + {y^2} - x + y - 8 = 0$ व ${x^2} + {y^2} + 2x + 2y - 11 = 0,$ के बीच का कोण है
उस बिन्दु के निर्देशांक जिससे वृत्तों ${x^2} + {y^2} = 1$, ${x^2} + {y^2} + 8x + 15 = 0$ व ${x^2} + {y^2} + 10y + 24 = 0$ पर खींची गयी स्पर्श रेखाओं की लम्बाइयाँ बराबर हैं, है
यदि बिन्दु $(1, 2)$ से वृत्त ${x^2} + {y^2} - 2x - 4y + \lambda = 0$ पर असंख्य स्पर्श रेखाएँ खींची जा सकती हों, तो $\lambda = $