Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

माना $a$ तथा $b$ धनात्मक वास्तविक संख्यायें इस प्रकार है कि $a >1$ तथा $b < a$ है। माना एक बिन्दु $P$ प्रथम चतुर्थाश में अतिपरवलय पर स्थित है। माना अतिपरवलय के बिन्दु $P$ पर खींची गई स्पर्श रेखा बिन्दु $(1,0)$ से गुजरती है तथा अतिपरवलय के बिन्दु $P$ पर खींचा गया अभिलम्ब निर्देशी अक्षों पर समान अन्त: खण्ड कास्ता है। माना बिन्दु $P$ पर स्पर्श रेखा, बिन्दु $P$ पर अभिलम्ब तथा $x$-अक्ष द्वारा निर्मित त्रिभुज के क्षेत्रफल को $\Delta$ से दर्शाते है। यदि अतिपरवलय की उत्केन्द्रता को $e$ से दर्शाते है, तो निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे ?

$(A)$ $1 < e < \sqrt{2}$

$(B)$ $\sqrt{2} < e < 2$

$(C)$ $\Delta=a^4$

$(D)$ $\Delta=b^4$

A

$A,D$

B

$A,B$

C

$A,C$

D

$B,D$

(IIT-2020)

Solution

Since Normal at point $P$ makes equal intercept on co-ordinate axes, therefore slope of Normal $=-1$

Hence slope of tangent $=1$

Equation of tangent

$y-0=1(x-1)$

$y=x-1$

Equation of tangent at $\left( x _1 y _1\right)$

$\frac{ xx _1}{ a ^2}-\frac{ yy _1}{ b ^2}=1$

$x-y=1$ (equation of Tangent)

on comparing $x _1= a ^2, y _1- b ^2$

 Also $a^2-b^2=1$

Now equation of normal at $\left( x _1 y _1\right)=\left( a _1 b ^2\right)$

$y-b^2=-1\left(x-a^2\right)$

$x+y=a^2+b^2 \ldots \text { (Normal) }$

point of intersection with $x$-axis is $\left( a ^2+ b ^2\right)$

Now $e=\sqrt{1+\frac{b^2}{a^2}}$

$e=\sqrt{1+\frac{b^2}{b^2+1}} \quad\left[\text { from (1) } \frac{b^2}{b^2+1}<1\right] 1$

$\Delta=\frac{1}{2} \text {.AB.PQ }$

$\text { and } \Delta=\frac{1}{2}\left(a^2+b^2-1\right) \cdot b^2$

$\left.\Delta=\frac{1}{2}\left(2 b^2\right) b^2 \text { (from (1) } a^2-1=b^2\right)$

$\Delta=b^4 \text { so option (D) }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.