- Home
- Standard 11
- Mathematics
माना $a$ तथा $b$ धनात्मक वास्तविक संख्यायें इस प्रकार है कि $a >1$ तथा $b < a$ है। माना एक बिन्दु $P$ प्रथम चतुर्थाश में अतिपरवलय पर स्थित है। माना अतिपरवलय के बिन्दु $P$ पर खींची गई स्पर्श रेखा बिन्दु $(1,0)$ से गुजरती है तथा अतिपरवलय के बिन्दु $P$ पर खींचा गया अभिलम्ब निर्देशी अक्षों पर समान अन्त: खण्ड कास्ता है। माना बिन्दु $P$ पर स्पर्श रेखा, बिन्दु $P$ पर अभिलम्ब तथा $x$-अक्ष द्वारा निर्मित त्रिभुज के क्षेत्रफल को $\Delta$ से दर्शाते है। यदि अतिपरवलय की उत्केन्द्रता को $e$ से दर्शाते है, तो निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे ?
$(A)$ $1 < e < \sqrt{2}$
$(B)$ $\sqrt{2} < e < 2$
$(C)$ $\Delta=a^4$
$(D)$ $\Delta=b^4$
$A,D$
$A,B$
$A,C$
$B,D$
Solution

Since Normal at point $P$ makes equal intercept on co-ordinate axes, therefore slope of Normal $=-1$
Hence slope of tangent $=1$
Equation of tangent
$y-0=1(x-1)$
$y=x-1$
Equation of tangent at $\left( x _1 y _1\right)$
$\frac{ xx _1}{ a ^2}-\frac{ yy _1}{ b ^2}=1$
$x-y=1$ (equation of Tangent)
on comparing $x _1= a ^2, y _1- b ^2$
Also $a^2-b^2=1$
Now equation of normal at $\left( x _1 y _1\right)=\left( a _1 b ^2\right)$
$y-b^2=-1\left(x-a^2\right)$
$x+y=a^2+b^2 \ldots \text { (Normal) }$
point of intersection with $x$-axis is $\left( a ^2+ b ^2\right)$
Now $e=\sqrt{1+\frac{b^2}{a^2}}$
$e=\sqrt{1+\frac{b^2}{b^2+1}} \quad\left[\text { from (1) } \frac{b^2}{b^2+1}<1\right] 1$
$\Delta=\frac{1}{2} \text {.AB.PQ }$
$\text { and } \Delta=\frac{1}{2}\left(a^2+b^2-1\right) \cdot b^2$
$\left.\Delta=\frac{1}{2}\left(2 b^2\right) b^2 \text { (from (1) } a^2-1=b^2\right)$
$\Delta=b^4 \text { so option (D) }$