अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(8,\;3\sqrt 3 )$ पर अभिलम्ब का समीकरण है
$\sqrt 3 x + 2y = 25$
$x + y = 25$
$y + 2x = 25$
$2x + \sqrt 3 y = 25$
रेखा $y = x - 1$ का $3{x^2} - 4{y^2} = 12$ के साथ स्पर्श बिन्दु है
अतिपरवलय $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ की स्पर्श रेखा, जो रेखा $y - x + 5 = 0$, के समान्तर है, का समीकरण है
यदि रेखा $L _1$ अतिपरवलय $\frac{ x ^2}{16}-\frac{ y ^2}{4}=1$ की स्पर्श रेखा है तथा रेखा $L _2$ मूलबिंदु से गुजरती हो व रेखा $L _1$ के लम्बवत् हो । यदि रेखा $L _1$ तथा $L _2$ के प्रतिच्छेद बिंदु का बिंदुपथ $\left( x ^2+ y ^2\right)^2=\alpha x ^2+\beta y ^2$ हो, तो $\alpha+\beta$ का मान होगा -
एक समकोणीय अतिपरवलय $(rectangular\,hyperbola)$ $x^2-y^2=a^2, a>0$, पर तीन बिन्दुएँ $A, B, C$ इस प्रकार ली गई हैं कि $A=(-a, 0) ; B$ एवं $C$ को $x$-अक्ष के सापेक्ष सममितिय $(symmetrically)$ तरीके से उस अतिपरवलय की ऐसी शाखा पर रखा जाता है जिसपर $A$ नहीं है। मान लीजिए कि त्रिभुज $A B C$ समबाहु है। यदि त्रिभुज $A B C$ की भुजा की लंबाई $k a$ है, तब $k$ निम्न अंतराल में होगा:
माना परवलय $y ^2=24 x$ के बिंदु $(\alpha, \beta)$ पर स्पर्श रेखा, रेखा $2 x +2 y =5$ के लंबवत है। तो अतिपरवलय $\frac{ x ^2}{\alpha^2}-\frac{ y ^2}{\beta^2}=1$ के बिंदु $(\alpha+4, \beta+4)$ पर अभिलंब किस बिंदु से होकर नहीं जाता ?