Let $\alpha ,\beta $ be such that $\pi < (\alpha - \beta ) < 3\pi $. If $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ and $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ then the value of $\cos \frac{{\alpha - \beta }}{2}$ is
$\frac{{ - 6}}{{65}}$
$\frac{3}{{\sqrt {130} }}$
$\frac{6}{{65}}$
$ - \frac{3}{{\sqrt {130} }}$
Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
If $0 < x , y < \pi$ and $\cos x +\cos y-\cos ( x + y )=\frac{3}{2},$ then $\sin x+\cos y$ is equal to ...... .
The value of $2 \sin(\frac{\pi}{8}) \sin (\frac{2 \pi}{8}) \sin (\frac{3 \pi}{8}) \sin (\frac{5 \pi}{8}) \sin (\frac{6 \pi}{8}) \sin (\frac{7 \pi}{8})$ is:
The value of $\cot {70^o} + 4\cos {70^o}$ is
If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to