If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then

  • A

    ${x^y}.{y^z}.{z^x} = 1$

  • B

    ${x^x}{y^y}{z^z} = 1$

  • C

    $\root x \of x \,\root y \of y \root z \of z = 1$

  • D

    None of these

Similar Questions

Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,

  • [KVPY 2018]

Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that  $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$  $2 x-y=\log _b(\sqrt{1080}),$  then $4 x+5 y$ is equal to. . . . 

  • [IIT 2024]

The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is

The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$

Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.

  • [JEE MAIN 2023]