If $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ then
${x^y}.{y^z}.{z^x} = 1$
${x^x}{y^y}{z^z} = 1$
$\root x \of x \,\root y \of y \root z \of z = 1$
None of these
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$ $2 x-y=\log _b(\sqrt{1080}),$ then $4 x+5 y$ is equal to. . . .
The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is
The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$
Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.