माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z  + i\overline w  = 0$ और $arg\,\,zw = \pi $, तब $arg\  z$ बराबर है  

  • [AIEEE 2004]
  • A

    $5\pi /4$

  • B

    $\pi /2$

  • C

    $3\pi /4$

  • D

    $\pi /4$

Similar Questions

यदि $z$ एक सम्मिश्र संख्या हो, तो $z.\,\overline z  = 0$ यदि और केवल यदि

यदि $|{z_1}|\, = \,|{z_2}|$ तथा $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, तब ${z_1} + {z_2}$बराबर है

यदि ${z_1}$, ${z_2}$दो सम्मिश्र संख्याएँ इस प्रकार हों कि $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$ , तब $\frac{{{z_1}}}{{{z_2}}}$ ऐसी संख्या है जो कि होगी

यदि $\frac{{z - i}}{{z + i}}(z \ne  - i)$ एक पूर्णत: अधिकल्पित संख्या है, तब $z.\bar z$ बराबर है

किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $

  • [IIT 1988]