Gujarati
4-2.Quadratic Equations and Inequations
medium

यदि $\alpha ,\beta $ समीकरण ${x^2} + (3 - \lambda )x - \lambda  = 0$  के मूल हों, तो $\lambda $ के किस मान के लिये ${\alpha ^2} + {\beta ^2}$ का मान न्यूनतम होगा

A

$0$

B

$1$

C

$2$

D

$3$

Solution

(c) $\alpha  + \beta  = \lambda  – 3$ तथा $\alpha \beta  =  – \lambda $

${\alpha ^2} + {\beta ^2} = {(\alpha  + \beta )^2} – 2\alpha \beta $

= ${(\lambda  – 3)^2} + 2\lambda $

विकल्पों से

$\lambda  = 0$ के लिए ${({\alpha ^2} + {\beta ^2})_{\lambda  = 0}} = 9$

$\lambda  = 1$ के लिए ${({\alpha ^2} + {\beta ^2})_{\lambda  = 1}} = 1 – 4 + 9 = 6$

$\lambda  = 2$ के लिए ${({\alpha ^2} + {\beta ^2})_{\lambda  = 2}} = 4 – 8 + 9 = 5$

$\lambda  = 3$ के लिए ${({\alpha ^2} + {\beta ^2})_{\lambda  = 3}} = 9 – 12 + 9 = 6$

${\alpha ^2} + {\beta ^2}$, $\lambda  = 2$ पर न्यूनतम है।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.