Let $0 < x < \frac{\pi }{4}.$ Then $\sec 2x - \tan 2x = $

  • [IIT 1994]
  • A

    $\tan \left( {x - \frac{\pi }{4}} \right)$

  • B

    $\tan \left( {\frac{\pi }{4} - x} \right)$

  • C

    $\tan \left( {x + \frac{\pi }{4}} \right)$

  • D

    ${\tan ^2}\left( {x + \frac{\pi }{4}} \right)$

Similar Questions

If $a\,\cos 2\theta + b\,\sin 2\theta = c$  has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is

If $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ then $(\alpha ,\beta ) = $

The expression $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ is equal to

Prove that $\sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos ^{2} x \sin 4 x$

$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to