Let $0 < x < \frac{\pi }{4}.$ Then $\sec 2x - \tan 2x = $

  • [IIT 1994]
  • A

    $\tan \left( {x - \frac{\pi }{4}} \right)$

  • B

    $\tan \left( {\frac{\pi }{4} - x} \right)$

  • C

    $\tan \left( {x + \frac{\pi }{4}} \right)$

  • D

    ${\tan ^2}\left( {x + \frac{\pi }{4}} \right)$

Similar Questions

Prove that $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$

The value of $2 \sin(\frac{\pi}{8}) \sin (\frac{2 \pi}{8}) \sin (\frac{3 \pi}{8}) \sin (\frac{5 \pi}{8}) \sin (\frac{6 \pi}{8}) \sin (\frac{7 \pi}{8})$ is:

  • [JEE MAIN 2021]

If $\alpha$, $\beta$,$\gamma$ are positive number such that $\alpha + \beta = \pi$  and $\beta  + \gamma = \alpha$, then $tan\ \alpha$ is equal to - (where $\gamma  \ne n\pi ,n \in I$ )

If $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, then $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ is

$cosec^2\theta $ = $\frac{4xy}{(x +y)^2}$ is true if and only if