3.Trigonometrical Ratios, Functions and Identities
easy

Let $0 < x < \frac{\pi }{4}.$ Then $\sec 2x - \tan 2x = $

A

$\tan \left( {x - \frac{\pi }{4}} \right)$

B

$\tan \left( {\frac{\pi }{4} - x} \right)$

C

$\tan \left( {x + \frac{\pi }{4}} \right)$

D

${\tan ^2}\left( {x + \frac{\pi }{4}} \right)$

(IIT-1994)

Solution

(b) $\sec 2x – \tan 2x = \frac{{1 – \sin 2x}}{{\cos 2x}}$ 

$ = \frac{{{{(\cos x – \sin x)}^2}}}{{({{\cos }^2}x – {{\sin }^2}x)}} $

$= \frac{{\cos x – \sin x}}{{\cos x + \sin x}} = \frac{{1 – \tan x}}{{1 + \tan x}}$

$ = \frac{{\tan \frac{\pi }{4} – \tan x}}{{1 + \tan \left( {\frac{\pi }{4}} \right)\sin x}} = \tan \left( {\frac{\pi }{4} – x} \right)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.