माना $r$ त्रिज्या के वृत्त के व्यास $PR$ के सिरों पर स्पर्श रेखायें $PQ$ तथा $RS$ हैं। यदि $PS$ तथा $RQ$, वृत्त की परिधि के बिन्दु $X$ पर प्रतिच्छेदित हो, तो $2r$ बराबर है

  • [IIT 2001]
  • A

    $\sqrt {PQ.RS} $

  • B

    $\frac{{PQ + RS}}{2}$

  • C

    $\frac{{2PQ.\,\,RS}}{{PQ + RS}}$

  • D

    $\sqrt {\frac{{P{Q^2} + R{S^2}}}{2}} $

Similar Questions

यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा

  • [JEE MAIN 2019]

रेखा $(x - a)\cos \alpha  + (y - b)$ $\sin \alpha  = r$, वृत्त ${(x - a)^2} + {(y - b)^2} = {r^2}$ की एक स्पर्श रेखा होगी

यदि त्रिभुज, जो धनात्मक $x$-अक्ष तथा वत्त $( x -2)^{2}+( y -3)^{2}=25$ के बिन्दु $(5,7)$ पर खींचे गए अभिलम्ब तथा स्पर्श रेखा द्वारा बनता है, का क्षेत्रफल $A$ है, तो $24 A$ बराबर है

  • [JEE MAIN 2021]

बिन्दु $\mathrm{P}(-3,2), \mathrm{Q}(9,10)$ तथा $\mathrm{R}(\alpha, 4)$ एक वृत्त $\mathrm{C}$ पर हैं, जिसका व्यास $P R$ ह। बिन्दुओं $Q$ तथा $R$ पर वृत्त $\mathrm{C}$ की स्पर्श रेखाएँ बिन्दु $\mathrm{S}$ पर मिलती है। यदि बिन्दु $\mathrm{S}$ रेखा $2 \mathrm{x}-\mathrm{ky}=1$ पर है, तो $\mathrm{k}$ बराबर है___________. 

  • [JEE MAIN 2023]

एक वत्त के बिन्दु $(2,5)$ पर स्पर्श रेखा का समीकरण $2 x - y +1=0$ है तथा वत्त का केन्द्र रेखा $x -2 y =4$ पर है, तो वत्त की त्रिज्या है

  • [JEE MAIN 2021]