The equation of the tangent to the circle ${x^2} + {y^2} = {a^2}$ which makes a triangle of area ${a^2}$ with the co-ordinate axes, is
$x \pm y = a\sqrt 2 $
$x \pm y = \pm a\sqrt 2 $
$x \pm y = 2a$
$x + y = \pm 2a$
Tangent to the circle $x^2 + y^2$ = $5$ at the point $(1, -2)$ also touches the circle $x^2 + y^2 -8x + 6y + 20$ = $0$ . Then its point of contact is
The equations of the tangents to the circle ${x^2} + {y^2} = {a^2}$ parallel to the line $\sqrt 3 x + y + 3 = 0$ are
Let the normals at all the points on a given curve pass through a fixed point $(a, b) .$ If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2}),$ and given that $a-2 \sqrt{2} b=3,$ then $\left(a^{2}+b^{2}+a b\right)$ is equal to ..... .
If the line $y = \sqrt 3 x + k$ touches the circle ${x^2} + {y^2} = 16$, then $k =$
Let the tangent to the circle $x^{2}+y^{2}=25$ at the point $R (3,4)$ meet $x$ -axis and $y$ -axis at point $P$ and $Q$, respectively. If $r$ is the radius of the circle passing through the origin $O$ and having centre at the incentre of the triangle $OPQ ,$ then $r ^{2}$ is equal to