यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ जिसकी नाभियाँ ${F_1}$ व ${F_2}$ हैं पर एक चर बिन्दु $P$ है। यदि $A$, त्रिभुज $P{F_1}{F_2}$ का क्षेत्रफल हो तो $A$ का अधिकतम मान है
$ab$
$abe$
$\frac{e}{{ab}}$
$\frac{{ab}}{e}$
मान लीजिए कि $x^2=4 k y, k > 0$ एक परवलय है, जिसका शीर्ष $A$ है। मान लें कि $B C$ इसका नाभि लंब $(latus\,rectum)$ है। एक दीर्घवृत, जिसका केंद्र $B C$ पर है और परवलय को $A$ पर छूता है, $B C$ को $D$ एवं $E$ बिन्दुओं पर इस प्रकार काटता है कि $B D=D E=E C(B, D, E, C$ के क्रम में)। दीर्घवृत की उत्केन्द्रता $(eccentricity)$ निम्न है :
वक्रों $y^2=2 x$ तथा $x^2+y^2=4 x$, के बिन्दु $(2,2)$ पर स्पर्श रेखाएँ तथा रेखा $\mathrm{x}+\mathrm{y}+2=0$ एक त्रिभुज बनाती है। यदि इस त्रिभुज के परिवृत्त की त्रिज्या है तो $\mathrm{r}^2$ बराबर है___________.
उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसकी नाभियों के निर्देशांक $(±5,0)$ तथा शीर्षों के निर्देशांक $(±13,0)$ हैं।
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की कोई स्पर्श रेखा अक्षों पर $h$ व $k$ लम्बाई के अन्त: खण्ड काटती है, तो $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $
एक दीर्घवृत्त एक गोल धागे से बनाया जाता है जो दो पिनों के ऊपर से होकर गुजरता है । यदि इस प्रकार बने दीर्घवृत्त के अक्ष क्रमश: $6$ सेमी व $4$ सेमी हों, तो धागे की लम्बाई और पिनों के बीच की दूरी सेमी में क्रमश: होगी