1.Relation and Function
hard

Let $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ and $m(b)$ the minimum value of $f(x)$ for a given $b$. As $b$ varies, the range of $m(b)$ is

A

$[0, 1]$

B

$\left( {0,\;\frac{1}{2}} \right]$

C

$\left[ {\frac{1}{2},\;1} \right]$

D

$(0,\;1]$

(IIT-2001)

Solution

(d) $f(x) = (1 + {b^2}){x^2} + 2bx + \frac{{{b^2}}}{{(1 + {b^2})}} – \frac{{{b^2}}}{{1 + {b^2}}} + 1$

$ = (1 + {b^2})\,{\left( {x + \frac{b}{{1 + {b^2}}}} \right)^2} + \frac{1}{{1 + {b^2}}} \ge \frac{1}{{1 + {b^2}}}$

$\therefore$  $m(b) = \frac{1}{{1 + {b^2}}}$, so range of $m(b) = (0,\,1]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.