જો $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ અને $m(b)$ એ આપેલ $b$ માટે $f(x)$ નું ન્યૂનતમ મૂલ્ય છે તો $b$ ને બદલવામાં આવે $m(b)$ નો વિસ્તાર મેળવો.
$[0, 1]$
$\left( {0,\;\frac{1}{2}} \right]$
$\left[ {\frac{1}{2},\;1} \right]$
$(0,\;1]$
વિધેય $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ નો પ્રદેશ મેળવો. ( કે જ્યાં $[.]$ એ મહતમ પૂર્ણાંક વિધેય છે .)
ધારો કે $f:(1,3) \rightarrow \mathrm{R}$ એ $f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ મુજબ વિધેય વ્યાખ્યાતિ છે કે જ્યાં $[\mathrm{x}]$ એ મહતમ પૃણાંક વિધેય છે તો વિધેય $f$ નો વિસ્તાર મેળવો.
ધારો કે $A=\{(x, y): 2 x+3 y=23, x, y \in \mathbb{N}\}$ અને $B=\{x:(x, y) \in A\}$. તો $\mathrm{A}$ થી $\mathrm{B}$ તરફના એક-એક વિધેયોની સંખ્યા ............ છે.
જો $f\ (x)$ વિધેય દરેક $x, y, \in N$ માટે $f\ (x + y) = f(x) f(y)$ ને સંતોષે જેથી $f(1) = 3$ અને $\sum\limits_{x\, = \,1}^n {{{f}}(x)} \, = \,120$ થાય. તો $n$ નું મૂલ્ય કેટલું થાય?
જો વિધેય $f(x+y)=f(x) f(y)$ for all $x, y \in N$ એવી રીતે વ્યાખ્યાયિત હોય કે જેથી, $f(1)=3$ અને $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ તો $n$ નું મૂલ્ય શોધો.