- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
easy
The abscissa of the points of the curve $y = {x^3}$ in the interval $ [-2, 2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2, 2], $ are
A
$ \pm {2 \over {\sqrt 3 }}$
B
$ \pm \sqrt 3 $
C
$ \pm {{\sqrt 3 } \over 2}$
D
$0$
Solution
(a) Given that equation of curve $y = {x^3} = f(x)$
So $f(2) = 8$ and $f( – 2) = – 8$
Now $f'(x) = 3{x^2} \Rightarrow f'(x) = \frac{{f(2) – f( – 2)}}{{2 – ( – 2)}}$
==>$\frac{{8 – ( – 8)}}{4} = 3{x^2};\,\,\,\,$
$\therefore x = \pm \frac{2}{{\sqrt 3 }}$.
Standard 12
Mathematics
Similar Questions
normal