જો $f(x)$ એ $[0, 2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે . જો $f (0) = 0$ અને દરેક $x$ કે જે $[0, 2]$ માટે $|f'(x)|\, \le {1 \over 2}$ તો . . . .
$f(x) \le 2$
$|f(x)| \le 1$
$f(x) = 2x$
$[0, 2]$ માં ઓછામાં ઓછા એક $x$ માટે $f(x) = 3$ થાય.
જો $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall x \in R$ અને $f"(x) > 0, \forall x \in R$ તો $g'(x) > 0$ થાય તે માટે $x \,\in$
વક્ર $y=x^5-20 x^3+50 x+2$ એ $x$-અક્ષને કેટલી વાર ક્રોસ કરશે. ?
જો સમીકરણ $a_nx^n + a_{n-1}x^{n-1}+ …. + a_1x = 0 $ નું ધન બીજ $x = \alpha $ હોય, તો સમીકરણ $na_nx^{n-1 } + (n - 1) a_{n-1}x^{n-2} + …. + a_1 = 0$ નું ધન બીજ કેવું હોય ?
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[5,9]$
જો વિધેયો $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ અને $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ ને સામાન્ય યરમ બિંદુ $(extreme\,point)$ હોય, તો $a+2 b+7=...........$