वास्तविक मान वाले फलन $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ के लिए $f\,'(x)$ का अन्तराल $\left( {1,\,26} \right)$ में मान होगा

  • A

    $0$

  • B

    $\frac{1}{{\sqrt {x - 1} }}$

  • C

    $2\sqrt {x - 1} - 5$

  • D

    इनमें से कोई नहीं

Similar Questions

फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में  $c$ का मान होगा

उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________

  • [JEE MAIN 2023]

यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है

  • [JEE MAIN 2014]

यदि $f ^{\prime} G \left(\frac{4}{3}\right)=0$, के साथ फलन $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ के लिए रोले का प्रमेय लागू होता है, तो क्रमित युग्म $( a , b )$ बराबर है

  • [JEE MAIN 2021]

संतत फलनों (Continuous functions) के प्रत्येक युग्म (pair) $f , g :[0,1] \rightarrow R$ जिनके लिये अधिकतम $\{ f ( x ): x \in[0,1]\}$ = अधिकतम $\{ g ( x ): x \in[0,1]\}$ है, के लिये सत्य कथन है(हैं)

$(A)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$

$(B)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+f(c)=(g(c))^2+3 g(c)$

$(C)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+g(c)$

$(D)$ किसी $c \in[0,1]$ के लिये $(f(c))^2=(g(c))^2$

  • [IIT 2014]