यदि $f(x) = \cos x,0 \le x \le \frac{\pi }{2}$, तो मध्यमान प्रमेय की वास्तविक संख्या $ ‘c’$  है

  • A

    $\frac{\pi }{6}$

  • B

    $\frac{\pi }{4}$

  • C

    ${\sin ^{ - 1}}\left( {\frac{2}{\pi }} \right)$

  • D

    ${\cos ^{ - 1}}\left( {\frac{2}{\pi }} \right)$

Similar Questions

यदि फलनों $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ तथा $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ का एक उभयानिष्ठ चरम बिन्दु है, तब $a+2 b+7$ बराबर है :

  • [JEE MAIN 2023]

माना $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ एक परिवर्तनीय तथा दो बार अवकलनीय फलन है और $\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$ है यदि एक वास्तविक मान फलन $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, द्वारा परिभाषित है, तो :

  • [JEE MAIN 2024]

माना $f$ कोई फलन है जोकि $[ a , b ]$ में संतत तथा $( a , b )$ में दो बार अवकलनीय है। यदि सभी $x \in( a , b )$ के लिए $f^{\prime}( x ) > 0$ तथा $f^{\prime \prime}( x )<0$ हैं, तो किसी भी $c \in( a , b )$, के लिए $\frac{f( c )-f( a )}{f( b )-f( c )}$ निम्न में से किससे बड़ा है?

  • [JEE MAIN 2020]

मान लीजिए कि $f: R \rightarrow R$ अभिकलनीय फलन $(differentiable\,functon)$ इस प्रकार है कि किन्हीं $a < b$ के लिए $f(a)=0=f(b)$ और $f^{\prime}(a) f^{\prime}(b) > 0$ है। अंतराल $(interval$;' $( a , b )$ में $f( x )$ के मूलों $(roots)$ की न्यूनतम संख्या क्या है ?

  • [KVPY 2010]

माना $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$, तब $x \in [0,1]$ के लिए  $ f$  पर रोले की प्रमेय मान्य है, यदि $\alpha = $

  • [IIT 2004]