दो घटनाओं $A$ और $B$ के लिए $P(A) = x$, $P(B) = y,$ $P(A \cap B) = z,$ तब $P(\bar A \cap B)$ का मान है

  • A

    $(1 - x)\,y$

  • B

    $1 - x + \,y$

  • C

    $y -z$

  • D

    $1 - x + y - z$

Similar Questions

माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ व $P(\bar A) = \frac{1}{4},$ जहाँ $\bar A$, घटना $A$ की पूरक है तब $A$ तथा $B$ हैं

  • [AIEEE 2005]

यदि $P(A) = 2/3$, $P(B) = 1/2$ तथा ${\rm{ }}P(A \cup B) = 5/6$ तब घटनायें $A$ तथा $B$ हैं

तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है 

  • [JEE MAIN 2017]

घटनाओं $A$ तथा $B$ में से कम से कम एक घटना के घटित होने की प्रायिकता $3/5$ है। यदि $A$ तथा $B$ के एक साथ होने की प्रायिकता $1/5$ है, तब $P(A') + P(B')$ का मान है

एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि

विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।