Let $A$ and $B$ be two events such that $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ and $P(\bar A) = \frac{1}{4},$ where $\bar A$ stands for complement of event $A$. Then events $A$ and $B$ are

  • [AIEEE 2005]
  • A

    Independent but not equally likely

  • B

    Mutually exclusive and independent

  • C

    Equally likely and mutually exclusive

  • D

    Equally likely but not independent

Similar Questions

If $A$ and $B$ are two events such that $P\,(A \cup B) = P\,(A \cap B),$ then the true relation is

  • [IIT 1998]

Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is

  • [JEE MAIN 2020]

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.5$ $0.35$ .........  $0.7$

If $A$ and $B$ are any two events, then $P(\bar A \cap B) = $

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$