Twelve tickets are numbered $1$ to $12$. One ticket is drawn at random, then the probability of the number to be divisible by $2$ or $3$, is
$\frac{2}{3}$
$\frac{7}{{12}}$
$\frac{5}{6}$
$\frac{3}{4}$
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Atleast one of them will not qualify the examination.
True statement $A$ and true statement $B$ are two independent events of an experiment.Let $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ then $P\left( {A \to B} \right)$ is (where $P(X)$ denotes probability that statement $X$ is true statement)
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?
$E:$ ' the card drawn is a king and queen '
$F:$ ' the card drawn is a queen or jack '
One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $E$ and $F$ independent ?
$\mathrm{E}:$ ' the card drawn is black '
$\mathrm{F}:$ ' the card drawn is a king '
An unbiased die is thrown twice. Let the event $A$ be 'odd number on the first throw' and $B$ the event 'odd number on the second throw '. Check the independence of the events $A$ and $B$.